Roll No. ____ Annual 2018

· cv.

Statistics (New Scheme) Paper: II		(INTER PART II - CLASS 12 th)(IV) OBJECTIVE Code: 8187				Time :20 Minutes Marks : 17	
Note	e: You have four choices for fill that circle in front of the in zero mark in that questi	hat question nu	time question 2	A B C	and D. The choice v Cutting or filling to	which you wo or mor	think is correct, e circles will result
1. i.			v				
1. 1.	1 ~		ß	(0)	α	(D)	$1-\beta$
	(A)	(B)	7	(C)		(D)	
ii.	If $E(\hat{\theta}) = \theta$ then $\hat{\theta}$ is						
	(A) biased	(B)	unbiased	(C)	consistent	(D)	none
iii.	2000 PM						
	o. v. is equal to		$S.E(\overline{x})$		σ^2		S^2
	(A) $\mu \overline{x}$	(B)	3.E(x)	(C)	0	(D)	D .
iv.	If $P = 0.7$, $n = 10$ th	nen $\mathbf{E}(\hat{p})$	is				
	(A) 0.07	(B)	0.7	(C)	7	(D)	0.35
v.			ted by				
	(A) Roman letters		reek letters	(C)	Latin letters	(D)	English letters
vi.		15 1					
	In normal distribution			(0)	+1	(D)	οc
	(A) -1	(B)	zero	(C)	71	(D)	
vii.					1		
	$\frac{4}{5}\sigma$		$\frac{2}{3}\sigma$.		$\frac{1}{2}\sigma$		2
	(A) 5	(B)	3	(C)	2	(D)	3σ
viii.	The parameters of no	rmal distri	bution are				
	(A) (n , p)	(B)	(μ, σ^2)	(C)	(μ, p)	(D)	(np, nq)
ix.	Another name of inde	• •	riable is	(0)		()	(~F) ~4/
IA.	(A) regressand		regressor	(C)	predictand	(D)	dependent
х.				200000000000000000000000000000000000000	N 50 (1997) N 1997 N 1997 N 1997 N		
Λ.	(A) -1	(B) +1			zero	(D)	2
		(2) 8/2 ()		(0)	2010	(5)	-
xi.	In regression, $\sum (y-\hat{y})$ is equal to						
Λ1.		(D)	. •	(C)	2000	(D)	$\sum \hat{y}$
	(A) -1	(B)	+1	(C)	zero	(D)	_
xii.				(0)		(D)	2
	(A) zero	Si 31	egative	(C)	positive	(D)	2
X111.	xiii. For 3×3 contigency table, the number of cells in the table are						
	(A) 3	(B)	6	(C)	9	(D)	4
xiv.	If a straight line is fit						ANNATES NO
	(A) $\sum y = \sum \hat{y}$	(\mathbf{R}) $\sum y$	$<\sum \hat{y}$	(C)	$\sum y > \sum \hat{y}$	(D)	$\sum (y - \hat{y})^2 = 0$
xv.		(-)		(C)		(D)	
Α1.	(A) secular trend		nal variation	(C) cv	clical variation	(D) irre	gular variation
yvi	A binary digit is com	20 AND SEC.		(0)	Onour variation	(D) 11.0	guiai variation
7,11.	(A) bit	(B)	byte	(C)	kilo byte	(D)	giga byte
		$\overline{Y} = u$		(0)	Allo Offic	(0)	0.0 0) 10
xvii.	t = -	$\frac{\overline{X} - \mu}{s / \sqrt{n}}$ has					
AVII.	Test - statistic,	S/\sqrt{n} has	d.f.				
	(A) n	(B)	n-1	(C)	n-2	(D)	n+1
					322 - 418 -1400****		

(INTER PART II - CLASS 12th) Statistics Time: 2: 40 Hours (New Scheme) Paper: II **SUBJECTIVE** Marks: 68 Note :-Section I is compulsory. Attempt any three Questions from section II. 2. Write short answers to any Eight parts. $(8 \times 2 = 16)$ i. Write properties of normal distribution. ii. In normal distribution $\mu_1 = 4$, find μ_2 and μ_4 . iii. In normal distribution $\sigma = 9$, find quartile deviation. iv. In normal distribution $\sigma = 5$, find mean deviation. In normal distribution $\sigma^2 = 25$, find the value of β_1 and β_2 . vi. Define statistical inference. vii. Define Type - two error. Define two tailed test. viii. ix Define test statistic. x. Define interval estimation. xi. Define computer. xii. Define the term CPU. 3. Write short answers to any Eight parts. $(8 \times 2 = 16)$ i. Define sampling unit. ii. Define finite and infinite populations. iii. What are the basic aims of sampling. iv. define random sampling. v. Define sampling error. vi Define sampling distribution. vii. Write normal equations for the regression equation $\hat{y} = a + bx$ viii. Estimate Y for X = 12 from the regression equation $\hat{Y} = -5.08 + 0.727 X$ ix. If C= 130 and d = 3.956, write down the regression equation $\hat{X} = C + dY$ and estimate X when Y=10. x. Interpret the meaning of r = -1 and r = +1. xi. Write down any two formulas of correlation co-efficient. xii. Given that Sxy = 72, Sx = 4.5 and Sy = 18, Find r_{xy} . 4. Write short answers to any Six parts. (6x 2 = 12)i. Define the term rank correlation. ii. Interpret the meaning when coefficient of association is zero. iii. Find the coefficient of association from the following data., (AB)= 528, (A β)=790, (αB = 25), ($\alpha \beta$) = 175 iv. What is meant by negative association? v. Define the term time series.

vi. Name four components of time series.
vii. What is meant by secular trend?